Light Dark Matter and Dark Radiation

arXiv:1501-xxxx

Jae Ho HEO Theoretical High Energy Group jaeheo1@gmail.com

YongPyong-High1 2015

Jan. 25 - 31, 2015

Outlines

- 1. Dark radiation
- 2. MeV-dark matter annihilation into neutrinos
- 3. Thermal equilibrium approximation
- 4. Out-of-equilibrium production
- 5. Conclusions

Dark Radiation

- Radiation: relativistic particles and energy
- Cosmology : after neutrino decoupling $T_{\gamma} < 2 3$ MeV (t > 1sec)

→ neutrinos and photons are relativistic

• In general, total radiation density

$$\rho_{\rm total} = \rho_{\gamma} \left(1 + \frac{7}{8} \left(\frac{T_{\nu}}{T_{\gamma}} \right)^{4/3} N_{\rm eff} \right)$$

• Standard model of cosmology

Effective number of neutrino species

$$\left(\frac{T_{\nu}}{T_{\gamma}}\right)_{\rm SM} = \left(\frac{4}{11}\right)^{1/3}, N_{\rm eff} \simeq 3.046$$

- CMB prediction :
- BBN prediction :

Planck Col., A&A 576, A16 (2014)
$$N_{\rm eff}^{\rm CMB} \simeq 3.30 \pm 0.27 \ (1\sigma)$$

 $N_{\rm eff}^{\rm BBN} \simeq 3.56 \pm 0.23 \ (1\sigma)$ From He⁴ measurements

G.Steigman, K.M. Nollet, arXiv:1401.5488.

 Most of BSMs : considered extra relativistic species such as sterile neutrinos, Goldston bosons, etc

 $N_{\rm eff} > N_{\rm eff}^{\rm SM}$

$$\frac{T_{\nu}}{T_{\gamma}} = \left(\frac{T_{\nu}}{T_{\gamma}}\right)_{\rm SM}, \quad N_{\rm eff} > N_{\rm eff}^{\rm SM}$$

In our scenario, we cosider DM annihilations are more heating neutrinos than photons, $Br_{\nu} > Br_{\gamma}$

$$\frac{T_{\nu}}{T_{\gamma}} > \left(\frac{T_{\nu}}{T_{\gamma}}\right)_{\rm SM}, \quad N_{\rm eff} = N_{\rm eff}^{\rm SM}$$

We parametrize N_{eff} w.r.t. SM temperature ratio $\left(\frac{T_{\nu}}{T_{\gamma}}\right)_{\text{SM}} = \left(\frac{4}{11}\right)^{1/3}$

$$N_{\rm eff} = N_{\rm eff}^{\rm SM} ~ \left(\frac{T_{\nu}}{T_{\gamma}}\right)^{4/3} \left(\frac{11}{4}\right)^{4/3}$$

In case that neutrinos are heated,

$$N_{\rm eff} > N_{\rm eff}^{\rm SM}$$

We can compare this with experimental measurements.

Dark matter annihilation into neutrinos

Time evolution of Boltzmann equation of DM number density

$$\frac{dn}{dt} + 3Hn = -\left\langle \sigma v \right\rangle \left(n^2 - n_{eq}^2 \right)$$

After neutrino decoupling, EM and DM (& neutrino) sectors are independent, not in thermal contact.

EM sector can always be in thermal equilibrium, because of their rapid interaction

$$\frac{dS_{\gamma}}{dt} = \frac{d(s_{\gamma}R^3)}{dt} = 0 \Rightarrow \frac{dT_{\gamma}}{dt} \simeq -HT_{\gamma}$$

Comoving number density $Y \equiv n/s_{\gamma}$

$$\frac{dY}{dx} = -\frac{\langle \sigma v \rangle s_{\gamma}}{xH} \left(Y^2 - Y^2_{eq} \right), \qquad x = M/T_{\gamma}: \text{ inverse temperature}$$

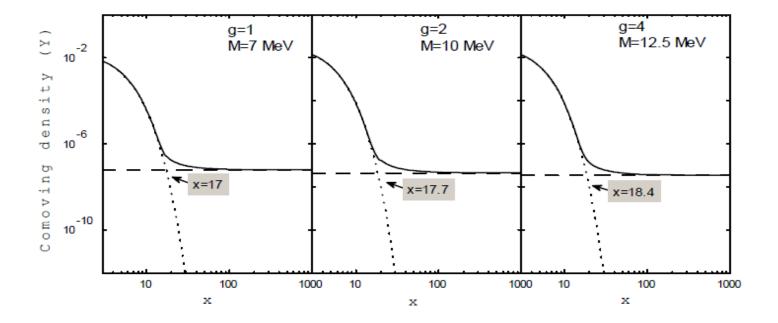


FIG. 1: Comoving number density $(Y \equiv n_{\rm DM}/s_{\gamma})$ as a function of inverse temperature $(x \equiv M/T_{\gamma})$ for $\langle \sigma v \rangle = 9.5 \times 10^{-26} \ cm^3/s$. The horizontal dashed line represents the correct relic density at present, and dotted line is the the equilibrium number density.

Themal equilibrium approximation (entropy conservation)

• Comoving entropy: $S = sR^3 = \frac{2\pi^2}{45}g_{*s}T^3 \cdot R^3$, $(S = S_\gamma \text{ or } S_\nu)$

$$\begin{split} & \text{EM} & \text{DM (\&neutrino)} \\ & \frac{(RT_{\gamma})_f}{(RT_{\gamma})_i} = \left(\frac{g_{*s,i}^{\gamma}}{g_{*s,f}^{\gamma}}\right)^{1/3}, & \frac{(RT_{\nu})_f}{(RT_{\nu})_i} = \left(\frac{g_{*s,i}^{\nu}}{g_{*s,f}^{\nu}}\right)^{1/3} \end{split}$$

From the common factor *R*, we get the relation between photon and neutrino temperatures

$$\frac{T_{\nu,f}}{T_{\gamma,f}} = \left(\frac{g_{*s,i}^{\nu}}{g_{*s,f}^{\nu}}\right)^{1/3} \left(\frac{g_{*s,f}^{\gamma}}{g_{*s,i}^{\gamma}}\right)^{1/3} \frac{T_{\nu,i}}{T_{\gamma,i}}$$

Initial conditions are taken from around neutrino decoupling time,

$$\frac{T_{\nu,i}}{T_{\gamma,i}} = \left(\frac{4}{11}\right)^{1/3} \qquad \text{around this time}$$

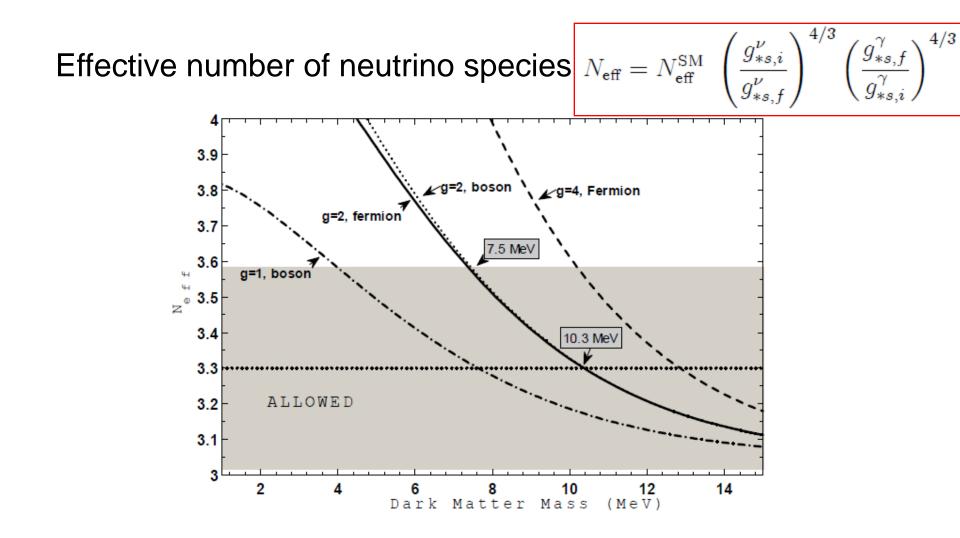
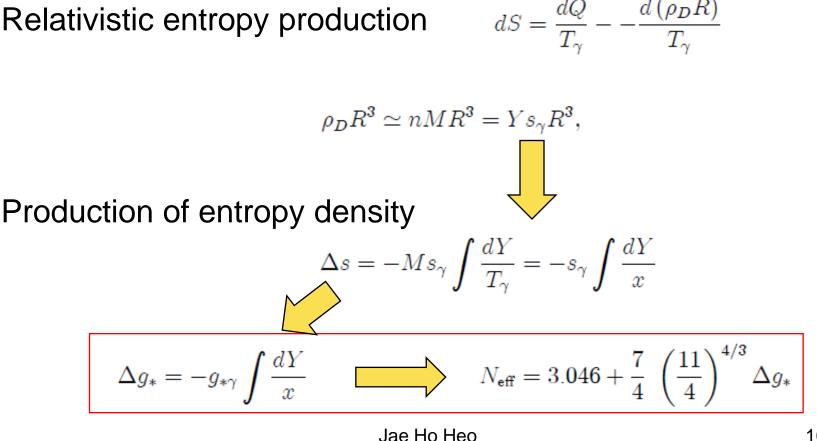



FIG. 2: The effective number of neutrino degrees of freedom, N_{eff} , as a function of a thermal dark matter mass M. Curves correspond to a g=1 self-conjugate scalar (short dash), g=2 Majorana (solid), g=2 complex scalar (dotted) and g=4 Dirac dark matter (long dash). The horizontal band is the Planck CMB 1 σ allowed range for N_{eff} and the horizontal dotted line is its central value.

Out-of-equilibrium production

DM annihilation transfers energy from the DMs to neutrinos. From thermodynamics 2nd law, because of adiabatic expansion

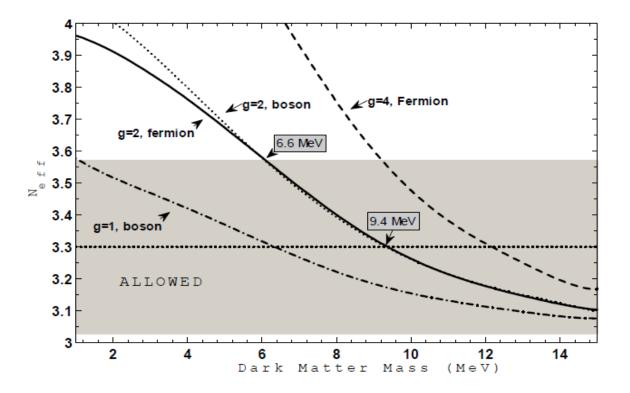


FIG. 3: The effective number of neutrino degrees of freedom, N_{eff} , as a function of a thermal dark matter mass M. Curves correspond to a g=1 self-conjugate scalar (short dash), g=2 Majorana (solid), g=2 complex scalar (dotted) and g=4 Dirac dark matter (long dash). The horizontal band is the Planck CMB 1 σ allowed range for N_{eff} and the horizontal dotted line is its central value.

Compared with results from thermal equilibrium approximation,

DR measurements can be explained for smaller DM masses,

Jae Ho Heo

Conclusions

 DR measurements were interpreted by light DM annihilation into neutrinos, and could be explained by this scenario.

 Quantitatively, I estimated the proper DM mass in DM thermal equilibrium approximation and out-of-equilibrium process.

• After neutrino decoupling, DMs have to annihilate longer time in out-of-equilibrium process. DMs have to be lighter.

THANKS for ATTENTION